Factorise : $x^{3}-2 x^{2}-x+2$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$x^{3}-2 x^{2}-x+2$

Rearranging the terms, we have

$x^{3}-2 x^{2}-x+2=x^{3}-x-2 x^{2}+2=x\left(x^{2}-1\right)-2\left(x^{2}-1\right)$

$=\left(x^{2}-1\right)(x-2)$

$=\left[(x)^{2}-(1)^{2}\right][x-2]$

$=(x-1)(x+1)(x-2)$

$\left[\because a ^{2}- b ^{2}=( a + b )( a - b )\right]$

Thus,  $x^{3}-2 x^{2}-x+2=(x-1)(x+1)(x-2)$

Similar Questions

Evaluate using suitable identities : $(104)^{3}$

Verify whether the following are zeroes of the polynomial, indicated against them.

$p(x)=5 x-\pi, \,\,x=\frac{4}{5}$

Factorise the following using appropriate identities : $9 x^{2}+6 x y+y^{2}$

Evaluate the following products without multiplying directly : $103 \times 107$

Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases : $p(x)=x^{3}+3 x^{2}+3 x+1$,  $g(x)=x+2$.