Factorise : $x^{3}-2 x^{2}-x+2$
$x^{3}-2 x^{2}-x+2$
Rearranging the terms, we have
$x^{3}-2 x^{2}-x+2=x^{3}-x-2 x^{2}+2=x\left(x^{2}-1\right)-2\left(x^{2}-1\right)$
$=\left(x^{2}-1\right)(x-2)$
$=\left[(x)^{2}-(1)^{2}\right][x-2]$
$=(x-1)(x+1)(x-2)$
$\left[\because a ^{2}- b ^{2}=( a + b )( a - b )\right]$
Thus, $x^{3}-2 x^{2}-x+2=(x-1)(x+1)(x-2)$
Evaluate using suitable identities : $(104)^{3}$
Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=5 x-\pi, \,\,x=\frac{4}{5}$
Factorise the following using appropriate identities : $9 x^{2}+6 x y+y^{2}$
Evaluate the following products without multiplying directly : $103 \times 107$
Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases : $p(x)=x^{3}+3 x^{2}+3 x+1$, $g(x)=x+2$.